Crystalline surface structures induced by ion sputtering of Al-rich icosahedral quasicrystals

نویسندگان

  • Z. Shen
  • Matthew J. Kramer
  • Cynthia J. Jenks
  • A. I. Goldman
  • Thomas A. Lograsso
  • Patricia A. Thiel
  • M. J. Kramer
چکیده

Low-energy electron diffraction patterns, produced from quasicrystal surfaces by ion sputtering and annealing to temperatures below ∼700 K, can be assigned to various terminations of the cubic CsCl structure. The assignments are based upon ratios of spot spacings, estimates of surface lattice constants, bulk phase diagrams vs surface compositions, and comparisons with previous work. The CsCl overlayers are deeper than about five atomic layers, because they obscure the diffraction spots from the underlying quasicrystalline substrate. These patterns transform irreversibly to quasicrystalline(like) patterns upon annealing to higher temperatures, indicating that the cubic overlayers are metastable. Based upon the data for three chemically identical, but symmetrically inequivalent surfaces, a model is developed for the relation between the cubic overlayers and the quasicrystalline substrate. The model is based upon the related symmetries of cubic close-packed and icosahedral-packed materials. The model explains not only the symmetries of the cubic surface terminations, but also the number and orientation of domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atom Clusters with Icosahedral Symmetry in Cubic Alloy Phases Related to Icosahedral Quasicrystals

Icosahedral symmetry can not be allowed to exist in crystalline phases. However, the structures of some crystalline alloy phases are characterized by packing of atom clusters with icosahedral symmetry, and their structures are considered to be closely related to the structures of icosahedral quasicrystals. For examples, a cubic α-(AlMnSi) crystalline phase with a lattice constant of 1.264 nm is...

متن کامل

Nonicosahedral equilibrium overlayers of icosahedral quasicrystals.

We demonstrate that icosahedral Al-Pd-Mn quasicrystals can have nonicosahedrally ordered thermodynamic equilibrium overlayers. The formation of orthorhombic or decagonal equilibrium surface structures is determined by the phase equilibrium of the ternary alloy at given composition and temperature as well as by the surface acting as nucleation site. Nonequilibrium steady-state orthorhombic and h...

متن کامل

Direct observation of solid-state reversed transformation from crystals to quasicrystals in a Mg alloy

Phase transformation of quasicrystals is of interest in various fields of science and technology. Interestingly, we directly observed unexpected solid-state epitaxial nucleation and growth of Zn6Mg3Y icosahedral quasicrystals in a Mg alloy at about 573 K which is about 300 K below the melting point of Zn6Mg3Y, in contrast to formation of quasicrystals through solidification that was usually fou...

متن کامل

Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering.

A formation process for semiconductor quantum dots based on a surface instability induced by ion sputtering under normal incidence is presented. Crystalline dots 35 nanometers in diameter and arranged in a regular hexagonal lattice were produced on gallium antimonide surfaces. The formation mechanism relies on a natural self-organization mechanism that occurs during the erosion of surfaces, whi...

متن کامل

Ordered oxide layers on decagonal Al-Co-Ni and icosahedral Al-Pd-Mn quasicrystals

Metal oxides display a variety of crystal structures which often are more complicated compared to the parent metals [1]. In particular, the oxide structures grown on ordered aluminum binary alloys have been an immense challenge for scientists since decades [2]. On NiAl(110), oxygen binds to Al and forms an atomically thin layer of super-cell epitaxy with a huge unit cell. We investigate the str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017